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Abstract
Today, computers commonly have graphics hardware with a processing power
far exceeding that of the main processors in the same machines. Modern
graphics hardware consists of highly data-parallel processors, which are user
programmable. However, software development utilizing these processors di-
rectly is reserved for platforms that require a fair bit of intimate knowledge
about the underlying hardware architecture.

The need for specialized development platforms that expose the underlying
parallelism to developers, elevates the learning threshold for newcomers, which
obstructs the general adaption of gpu support. However, there are many frame-
works that build upon, and elevate the abstraction level of, these specialized
development platforms. These frameworks strive to provide programming
interfaces less dependent on graphics architecture knowledge, and better re-
sembling how you would program traditional software. They all come with
their own quirks, and many of the abstractions they provide come with a
considerable computational overhead.

This thesis aims to catalog relevant kinds of high-level gpgpu frameworks,
and to evaluate their abstractions, and the overhead these abstraction impose
on their applications. The experiments are based on real-world sar process-
ing problems that physicists at the university are exploring the possibility of
accelerating on gpus, and the experiments compare frameworks against each
other and against a baseline low-level cuda implementation. The results show
that the overhead most frameworks impose are moderate for data-intensive
problems, considerable for compute-intensive problems, and typically higher
for high-level interpreted language bindings than for native frameworks.

Libraries with thoroughly tested general-purpose gpu functionality (e.g. Ar-
rayFire) help in the development process, but must work on moderately sized
data structures to amortize their overhead sufficiently. gpu code generators
(e.g. VexCL) also have great potential, but their abstractions tend to add com-
plexity to the code, which make them better suited for advanced gpu program-
mers, than regular developers.
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1
Introduction
Traditional graphics hardware used specialized processing pipelines for render-
ing graphics, but modern hardware has evolved into general-purpose highly
data-parallel processors. Modern Graphics Processing Units (gpus) are com-
putational beasts, but lack of software support for making use of gpus causes
a general underutilization of their potential compute resources.

Using gpu hardware to compute non-graphics problems is the research field
knowns as General Purpose computing on Graphics Processing Units (gpgpu).
Today there are two major gpgpu platforms, Compute Unified Device Archi-
tecture (cuda) and Open Compute Language (opencl), and each of them
provide their own C-like interface to program gpu code. The interfaces these
platforms provide are designed to facilitate performance critical application de-
velopment, so they are intentionally exposing the underlying data parallelism
to developers, which inherently complicates the interfaces.

Using these complicated programming interfaces elevates the learning thresh-
old needed to develop software that utilizes gpu compute resources. Simplify-
ing the development interface is one way lowering the initial learning threshold,
and the common approach for doing so, involves the design of high-level ab-
stractions intended to hide the underlying parallelism from developers.

1
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1.1 Research Problem
The primary research problem for this master’s thesis project is: How can you
best make abstractions for lowering the threshold needed to make use of the
compute resources found in modern gpu hardware? This thesis consists of the
subproblems:

• What functionality does gpgpu abstractions provide, and how does this
functionality benefit applications at large?

• What computational and programmable overhead do the usage of these
abstractions inflict on the underlying application?

This research project is a collaboration between the computer science and
the physics departments at Arctic University of Norway (uit), and Kongsberg
SPaceTec (kspt).

1.2 Motivation
This project rose from the desire to optimize some of the time consuming
satellite processing algorithms used by physicists at the Earth Observation
Laboratory (eo lab) at the uit. These physicists were seeking guidance into
the best approach for entering into the realm of gpu computing. They started
with extensive MATLAB experience, and, given that background, they wanted
to know what was the path of least resistance for getting a working gpu
implementation, which would considerably outperform their current Central
Processing Unit (cpu)-based implementation.

Given the specific algorithms they wanted to optimize, going straight for a
cuda oropencl implementation wouldmost certainly provide something that
outperformed theircpu implementation, but there surely exist frameworks that
would simplify the development process. The exploration for such frameworks
ensued, and this thesis is the result of the analysis to determine the optimal
path forward for these physicists, and others in similar situations.

1.3 Contributions
The contributions of this work are:

• A thorough exploration of the high-level gpgpu frameworks that exists
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within the cuda development ecosystem.

• A comparison and analysis of the performance overhead imposed by the
abstractions from a relevant subset of the researchedgpgpu frameworks.

• An evaluation of the usefulness, programmability and pitfalls of using
the abstractions provide by these frameworks.

• Implementations of some Synthetic Aperture Radar (sar) processing and
pattern recognition applications¹ in low-level cuda code and various
gpgpu frameworks.

1.4 Outline
Chapter 2 introduces the types, and uses, of computing accelerators, with a

focus on gpus, and it presents the evolution of the gpgpu research field.

Chapter 3 presents exploratory research into the capabilities and functionality
of various types of high-level gpgpu frameworks.

Chapter 4 describes the benchmark experiments and their results, for evalu-
ating and comparing, the functionality, and the performance overhead,
of the most promising subset of the researched frameworks.

Chapter 5 analyzes the performance results, and evaluates the performance
overhead of, and the usefulness of the abstractions provided by, the
benchmarked frameworks.

Chapter 6 concludes this thesis, summarizes its findings, and outlines future
work.

1. A chunk-wise statistical feature extractor (Section 4.2) and a terrain clustering procedure
(Section 4.3).





2
Background
2.1 Computing accelerators
A dedicated computing accelerator is some form of specialized hardware de-
signed towork in tandemwith themain cpu. The hardware of such accelerators
is designed to solve some subset of tasks, and doing them very well, as opposed
to solving / being optimized for the assortment of tasks that is needed to be
handled by the computer’s cpu. gpus are, by far, the most well known kind
of accelerators, but those are not the only ones[7, I].

Many Integrated Core (mic) is the common term for a processor architecture
comprising lots of simple cpu cores connected together with a carefully con-
sidered communication interconnect among each other and their dedicated
shared memory. This architecture is a middle ground between cpu and gpu
design. One example of this architecture is the Intel’s Xeon Phi, which is an
extension card with in more than 50 x86-compatible processing cores with
comprehensive Single Instruction, Multiple Data (simd) extensions that en-
ables high-bandwidth¹ shared memory access. Their main selling point is the
x86-compatibility, which means that they can be programmed like any regular
cpus, and they are designed to be direct competitors to gpus in the High
Performance Computing (hpc) community[10].

1. Intel® Xeon Phi™ Coprocessor 7120A: 352GB/s memory bandwidth, which is in the same
ballpark as gpus.

5



6 CHAPTER 2 BACKGROUND

Field Programmable Gate Arrays (fpgas) is a sort of reconfigurable Integrated
Circuit (ic) that can be dynamically programmed² to form custom process-
ing hardware.[7, III.A] Traditionally they and Application Specific Integrated
Circuits (asics), their static counterparts, have commonly been used as copro-
cessors for signal processing and other sorts of real-time applications. FPGA
development boards, which are regular extension cards, are nowadays being
used more and more as general purpose streaming pipeline accelerators in ap-
plications where this sort of acceleration is deemed advantageous[7, I].

This thesis limits its scope to gpu hardware, but the other kinds of accelerators
are mentioned because some of the frameworks are designed to write code
that is agnostic to what sort of accelerator hardware it is supposed to utilize.
This introduces a relevant factor in the choice of software framework, because
the potential of having the possibility for utilizing other, or even future, kinds
of processing hardware can prove to be a beneficial in the long run.

2.1.1 GPU Hardware
The graphics hardware is, at least traditionally, intended to off-load the cpu
with graphical rendering support, which, in many scenarios, has some degree of
Real-Time Computing (rtc) constraints. It is a piece of custom hardware that
is optimized for solving the particular sorts of tasks associated with rendering
graphics, and it usually has the physical hardware associated with handling all
graphics up to, but not including the actual display. Some of the gpus(e.g. [29])
are designed specifically forhpc applications, and can usually be distinguished
from other kinds of gpus by their lack of hardware for driving, and hence
lack of connectors for, displays. That being said, their architecture are not
that different from regular gpus, and high-end regular consumer gpus have
reasonable performance, too[34, 1.1].

This subsection describes the hardware architecture of newer gpus facilitated
for general-purpose computing tasks. Earlier graphics hardware was targeted
at a much more specific problem domain, so their design consisted of a static
pipeline where each element had its own specific computation task.[39, A.1]
Section 2.2.1 describes some of the reasons behind this hardware evolution, but
apart from that, gpu in the context of this thesis always refers to hardware
with general-purpose computing capabilities. The hardware description is
based on, and references a description focusing on, NVIDIA gpus, because the
experiments and optimization discussion focuses on NVIDIA hardware, but the

2. fpgas are bootstrapped with configuration parameters from a rom, so the correct term
is to configure their gates, but frameworks, such as opencl, provides programmers with
a higher level of abstraction.
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description is general enough to also apply to other kinds of gpu hardware
with general-purpose computing capabilities.

Massive Multithreading
One of the main hardware design differences between cpu and gpu architec-
tures is how they deal with the memory latency. cpus use a hierarchy of large
caches with orders of magnitudes lower latency than the main memory. These
caches store the useful data, so that this particular data is readily available to
the processor[39, 5.1]. gpus, on the other hand, use an execution model similar
to cpu hyperthreading, where a memory operation yields a context switch
until the data becomes available, and, by storing enough concurrent contexts,
overlaps the memory transfer delays with useful computing[39, A.4].

The caveat of how gpus manage memory latency, is that it depends on the pro-
cessor having enough concurrent computing tasks available to fill the waiting
period of each individual execution context. Their solution is to scale up the
multithreading, so currentgpus have hierarchies with multiprocessors totaling
thousands of parallel processing units. Each of those have access to dozens of
program contexts, which together make up enough useful computing work, so
as to overlap their individual memory operations[39, A.4].

Execution Locality
If every program context were doing something completely different from every
other program context, this would pose a major performance problem. For one
thing, it would surely saturate the memory bus just by fetching everyone’s next
instruction. The approach in gpus stems from the fact that these processor
are designed to solve Single Program, Multiple Data (spmd) problems, which
means that bunches of threads are running the same program, but each having
their own state.[39, p. A-22].

gpu threads are designed to be executed parallelly in bunches, and are statically,
as in for their entire lifetime, bunched together in groups of 32³ threads that
are being executed in parallel. Diverging execution flows are discouraged, as
this usually results in each distinct execution path being executed separately,
while some subset of the other threads in the group are waiting idly[39, p. A-
29].

3. This is suppose to be a device specific constant, warp size, but all cuda compatible
hardware has this fixed to 32, and this value is presumed by lots of software out there.
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Having these blocks of threads executing in parallel influences another design
choice where gpu hardware diverges from cpus. The memory buses, and the
cache lines (yes, gpus have tiny memory caches), are much wider⁴ than those
on found on regular cpus memory interfaces[34, 5.3.2]. The wide memory
bus is intended to batch together accesses to neighboring memory locations
required by separate threads within the same execution block into fewer
aggregated memory operations. This batching amortizes the observed memory
delay of an operation over the amount of threads that operate on data within
the memory span of that operation, so every thread in a group accessing
subsequent data elements at the same time will get their own element from the
one and same memory operation. Whilst groups with threads accessing offset
memory locations (e.g. the same column of subsequent rows in a row-major
array) need one memory operation per thread.

The gpu memory cache hierarchy is organized in a similar fashion to, and it
operates in the same manner as, its cpu counterpart, albeit having a much
smaller capacity, but its objective is fundamentally different. cpu memory
caches are designed for, and used to, hide the memory latency, but, as described
in Section 2.1.1, gpus have other means of approaching that problem, and, in
any case, their workload tend to reuse data much less regularly than cpu
applications[39, p. A-38]. Instead gpus use their memory caches to maximize
the memory bus utilization by minimizing redundant traffic[39, p. A-37].

2.2 GPGPU Platforms
The G in gpu stands for graphics, because that is the task that these accelera-
tors were originally designed to perform. However, as described in Section 2.1.1,
gpus are simply processors optimized to solve massively parallelizable prob-
lems, and since the turn of this century there has been lots of research into
how to exploit commodity graphics hardware into performing general purpose
computation.

2.2.1 Evolution of GPGPU
The processing domain for commodity graphics hardware expanded when
people started coming up with clever representations of much more complex
graphical computation problems than those envisioned by the hardware design-

4. The gpu used in the experiment has a 320-bit memory interface[29, p. 2].
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ers. An example of such work is [17], which computes Voronoi diagrams⁵ using
a gpu by computing distances as meshes of polygons. This trend continued
with works mapping general purpose computation problems into the graphical
domain, then mapping the resulting graphical solution back into the problem.
The most novel of these works is [27], which computes matrix multiplication
by mapping it intermediately as a graphics problem.

The earliest gpgpu research suffered inherent precision problems stemming
from hardware limitations, but they postulated, correctly, that the hardware
would evolve past those sorts of problems[27, 4]. Soon after, commodity graph-
ics hardware evolved to support regular Institute of Electrical and Electronics
Engineers (ieee) floating point precision[26, 6], which provides deterministic
rounding, and thereby results; and their programming interface changed to
accommodate a more programmable shader⁶ pipeline[26, 1], which gravely
increased their application domain.

Programmable shaders were intended for extending the possibilities of graph-
ical applications, so utilizing them for general purpose computation requires ad-
vanced graphics programming expertise[4, 1]. In an effort tomakinggpgpumore
accessible to other kinds of developers, the field of gpgpu evolved frameworks
providing an abstraction to the shader programming interfaces. One of the
earliest example of such a framework is Brook[4], which provides an extended
C language that compiles down to source code for the shader programming
interfaces.

Vendor Specific Platforms
A couple of years later NVIDIA released their own proprietary gpgpu platform,
which is vendor-specific, so it only works with NVIDIA hardware cuda[34, 1.2].
It provides an extended C language (cuda runtime) where you explicitly state
whether a part is intended for the device (i.e. gpu) or the host (i.e. cpu). The
cuda runtime is built upon a low-level C-library(driver Application Program-
ming Interface (api)), which provides the programmer with better control
than the runtime api, but complicates the process of linking together host and
device code.[34, 3].

At the same time Advanced Micro Devices, Inc. (amd) released a beta version
of their own low-level computation interface meant as a backend to the Brook
compiler[2]. amd’s backend evolved to a gpgpu platform similar to cuda, in

5. A space partitioning among a set of primitive geometrical shapes, such that each point
belongs to its closest shape[17, 1].

6. Graphics filters that are expressed as arbitrary functions.
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which the backend eventually have been dropped in favor of opencl[3].

OpenCL
opencl was released a couple of years after cuda, and it is an open and
vendor-independent programming interface for developing applications for
heterogeneous parallel processing platforms. Where cuda is optimized for,
and limited to, programminggpu hardware,opencl is amuchmore ambitious
project, which is intended to be used to programming various kinds of acceler-
ator hardware.[22, 1]. The initial release defines an extended C-language very
similar to the cuda runtime for programming accelerator device(e.g.gpus)[22,
6] kernels and a supporting C-library very similar to the cuda driver api[22,
5]. Later releases extends the interface with support for workflows more suited
for other kinds of accelerators (e.g. pipes for streaming processors[23, 5.4]),
so its api is diverging from cuda over time.

All the major gpu hardware manufactures provide proprietary opencl back-
ends, albeit some of them are a bit outdated, so for anyone interested in the
cross-platform aspect, opencl is the better choice of ecosystem. NVIDIA have
had a head start since the release of cuda, and cuda code tends to a bit more
optimized than equivalent opencl code on NVIDIA’s hardware, but opencl
is catching up, and given its openness and cross-platform aspect it will probably
prevail in the end. The cuda runtime abstractions makes it a fair bit easier to
write gpgpu applications compared to using the opencl api, and application
toolbox surrounding cuda is superior when it comes to debugging, profiling
and the like.

2.2.2 CUDA Kernels
Any code in cuda that executes on a gpu is known as a kernel. These kernels
are special entry point functions that the cpu schedules to be executed on the
gpu. From the developer’s perspective, scheduling a kernel execution looks
more or less like calling a regular function, but in addition to regular function
arguments, a set of special configuration parameters is also specified in the
function call. The configuration parameters specify how the developer would
like this code parallelly execute on the gpu, so the most important parameter
concerns itself with how many threads that are suppose to execute that block
of code in parallel.

The definition of such kernels looks like regular C/C++ functions, but in
reality they declare a spmd code block that will be executed in parallel. A
kernel’s function block can be thought of as the code block of a callable loop,
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and in every kernel a special variable is available, which contains what would
resemble the loop counter in this scenario. This loop counter is in reality an
unique identifier of a specific thread of execution, and it is used as the index of
data arrays just like loop counters in regular sequential loop constructs.

Kernel Fusion
# Think of each statement being compiled to a separate kernel
function dot(A,B)

AB = A.*B # element-wise product
sum(AB)

end

function dotFused(A,B)
# map(f, A): [a,...] --> [f(a),...]
# zip(A,B,...): [a,...], [b,...] --> [(a,b),...]
sum(map((t)->t[1]*t[2], zip(A,B)))

end

Listing 2.1: Pseudocode kernel fusion example. Kernel: A · B =
∑N

i=0AiBi .

Listing 2.1 visualizes a common optimization technique known as kernel fusion.
The procedure for doing this takes general compute kernels (e.g. element-wise
product) and merges them into a single kernel. The idea is that there is a more
or less fixed, but far from neglectable, overhead of executing any one kernel, so
merging more than one operation into a single kernel results in less aggregated
execution overhead than if all these operations were implemented as separate
kernels.





3
High-Level GPGPUFrameworks
As described in Section 2.2.1, gpgpu has evolved from a field reserved for
graphics gurus to spawning frameworks that makes programming them fairly
comparable to programming regular cpus. gpus are parallel processors, and,
since their platforms expose the parallelism, programming them inherently
requires concurrent programming knowledge. The explicit thread orchestration
described in Section 2.2.2 and isolatedmemory space¹ are additional sources for
errors, but apart from that, getting to a working program is little different from
writing regular C code. Optimizing the program for running on gpu hardware
requires a little more intimate knowledge about how gpus work, but this is
getting easier by each platform generation, and today you get a long way with
just as much knowledge as described in Section 2.1.1.

Thegpgpu platforms have come a long way, but their programming interface is
still fairly low-level, and, since many developers prefer to work at a higher level
of abstraction, many general-purpose libraries and alternate programming in-
terfaces have emerged. The motivation behind these frameworks differs slightly,
but their main goal is usually to somehow simplify the transition to gpu soft-
ware development. This chapter presents, and tries to categorize, a somewhat

1. Newer framework versions supports somewhat automatically synchronized memory[34,
3.2.7][23, 3.3.3].

13
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relevant portion of the available frameworks. The following sections describe
the framework categories, and Table 3.2 (end of chapter) gives a summarized
overview. The categories are not mutually exclusive, so frameworks providing
functionality spanning more than one category are presented in all of them,
but the different descriptions focus on separate parts of the frameworks.

This thesis focuses on frameworks from the ecosystem around cuda, rather
than opencl, since that is the most mature of the two. This choice is intended
to give the frameworks the best fighting chance in the experiments, but in the
framework description I mention similar opencl abstractions whenever they
exist. Some of these frameworks have additional support for seamlessly utilizing
multiple gpus, but this thesis limits its scope to single-gpu applications.

The names of cuda/opencl frameworks and libraries tend to being pre- or
suffixed with cu/cl, so in those particular cases it has not been emphasized
whether they are cuda or opencl frameworks. In general opencl frame-
works tend to be more free then the official cuda libraries, both in the sense
that a much greater share of them are open-source, but also with respect to
the fact that there is a much more commercialized ecosystem surrounding
cuda. There is also something fundamentally different about cuda libraries
being hand-optimized to their gpu architecture and opencl libraries being
written to support a much greater range of hardware. Some opencl libraries
mitigate this by using Just-In-Time (jit)-compiled hand-optimized kernels
chosen based on performance heuristic, and many others are simply designed
oblivious to the fact that they may run on non-gpu hardware.

3.1 Domain Specific Libraries
cuda opencl Description

cuBLAS clBLAS
Basic Linear Algebra Subprograms, a well known
vector/matrix math library.

cuFFT clFFT
Fast Fourier Transform, some complex signal pro-
cessing algorithms.

cuSPARSE clSPARSE Partial blas functionality for sparse matrices.

cuDNN jtorch,. . .
Deep Neural Network functionality. Torch is one
sort, so opencl has more specific libraries.

OpenCV Computer Vision functionality.

NPP OpenCLIPP
Integrated Performance Primitives, image and sig-
nal processing primitives.

Table 3.1: Examples of domain specific gpu libraries.
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First of all, let us emphasize the fact that there exists lots of special-purpose
gpu libraries, so applications that deal with common problems might benefit
from surveying the ecosystems for libraries that completely, or at least partially,
solve their problem. Some of the most well-known libraries are summarized in
Table 3.1, to give examples of domains for which these kinds of libraries exist,
but this thesis focuses on general-purpose abstractions, so those not relevant
for the specific benchmark will not be discussed any further.

3.2 Kernel Code Generators
Let us start this survey with a fairly low-level set of abstractions, and con-
tinue with increasingly higher-level abstraction frameworks. The frameworks
described in this section provide various kinds of reusable general-purpose
functionality to simplify the act of writing kernel code.

First of all, cuda has support for using C++ templates and lambdas in their
kernel code, which in itself gives it an advantage when it comes to writing
reusable code. On the other hand, opencl jit-compiles the kernels, which,
in spite of adding a bit of initialization overhead, gives them an opportunity to
generate code that is even better optimized to the particular problem.

3.2.1 CUB
CUDA UnBound (cub)[36] is a cuda template library that provides primitives
for doing common tasks in parallel without bothering with the details of how to
optimize that sort of parallelization for the particular hardware it is supposed to
run on. The primitives range from generic reduce and sorting functionality that
is used to create custom kernels, to generically generated multi-pass kernels for
solving common tasks. The motivation behind cub is to provide parallelizable
building blocks that ensure correctness and provide the developer with the
optimum choice of underlying implementation.

Newer gpu hardware have better compute capabilities², so the optimum im-
plementation for some functionality might depend on what hardware features
are supported by the gpus running the code. Abstracting away how these
sort of primitives are implemented also opens for the possibility of supporting
future optimization without the need for reimplementing the code. cub also
provides alternative algorithmic variants of the different primitives, in order

2. E.g. NVIDIA compute capability 3.0 introduced warp shuffling, which supports intra-warp
reductions without need for shared memory[34, B.14].
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for developers to simply switch between different implementations and test
which one results in the best performances[36, 4].

opencl does not have anything as substantial as cub, and its closest com-
petitor is the SkelCL[43] library. This library provides skeleton C++ templates
for common generic algorithms (e.g. map and reduce) with a user-supplied
opencl code representing the lambda function for the actual operation.

3.2.2 Hemi
Hemi[16] is a anothercuda template library trying to simplify hybridcpu/gpu
development. Its main contribution is a layer of abstraction to the relevant
cuda C-extensions, so that the code can be compiled to either generate sequen-
tial cpu code or automatically orchestrated parallel gpu code. Additionally it
provides a nifty parallel-for construct with, albeit experimental, native C++
lambda support, and some simplified orchestration and memory management
directives.[16, README.md].

3.2.3 Kernel Fusers
Section 2.2.2 describes a common technique for optimizing gpu code. The inter-
face for doing this sort of merging procedure, and the functionality supported,
differs among the frameworks, but the underlying idea is the same.

The first framework that utilized this abstract method of generating complex
kernels is the Standard Template Library (stl)³-like library, Thrust[35], for
cuda (later also Bolt[1] for opencl). This library provides a set of algorithms
(e.g. map, reduce and sort) which constitutes basic kernels, and any of these
are executed separately. The algorithms operate on data in the form of generic
iterators, so any algorithm can be fused with arbitrary element-wise operations
by wrapping the data accessors that arbitrarily transform the data[35, 3].
Listing 2.1 tries to illustrate the concept, but it should be noted that the C++
syntax for creating transformation iterators and the like is quite a bit more
verbose.

VexCL[11] is a multi-platform C++ vector expression library that automatically
fuses expressions into combined compute kernels. These expressions behave
like numerical types, so they yield considerable better readability, but it does
require runtime jit-compilation of the expressions, as opposed to template

3. The collection-like part of the standard C++ library, which provides abstract data con-
tainers with generic content and general algorithms using such containers.

https://github.com/harrism/hemi/blob/master/README.md
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libraries that determine the combined expression at compile-time. The library
lso supports more complicated functionality with custom kernel generators, so
it can ultimately be just as generic and has at least the same expressiveness as
Thrust and the like.

Tensor libraries and other sorts of expression optimization frameworks are also
heavily devoted to kernel fusion, but their process is more automatic and they
seldom provide any user-interface to manually organize how smaller kernels
are supposed to be combined.

3.3 Container Data Type
The previous section briefly touched upon the topic of abstract data interfaces,
which brings us to the next category of frameworks. This section describe
frameworks that provide Abstract Data Type (adt) interfaces to containers
for data residing in the gpu memory space. The idea behind these sorts of
frameworks is to work on data residing in the gpu memory as if it was a
regular data type, without transferring intermediate results back to the main
memory.

3.3.1 std::vector

The simplest data container explored by this thesis is gpu vectors (i.e. flat
indexable arrays). cuda’s Thrust, opencl’s Bolt and SkelCL provide an inter-
face to a gpu vector that mimics the C++ std::vector data type[35, 2][11,
Vector]. These vectors can be allocated/initialized and copied back as regular
C++ vectors, and the frameworks support user customizable constructs for
primitives (e.g. map and reduce) that access these vectors. The C++ vec-
tors are abstract data containers, so they themselves are simply oblivious to
their actual content, and, as such, have very intricate interfaces for expressing
operations on their actual data.

Other frameworks, such as VexCL, limit their vectors to only support numerical
data types, and they therefore have the ability to provide much more extensive
interfaces. Having interfaces that mimics mathematical expressions greatly
simplifies how to access the underlying data, and, as such, makes for much
more readable code, but it does this at the cost of the generality of the data
container.

http://skelcl.uni-muenster.de/doc/group__vector.html
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3.3.2 Multi-Dimensional Arrays
When frameworks choose to impose mathematical interfaces on their data
containers, the next logical step is multidimensional array (i.e. matrices). The
generality of C++ vector iterators makes it possible to map more complicated
structure (e.g. a matrix) onto the underlying data vectors in frameworks like
Thrust, but this merely complicates the process of operating on the underlying
data and the level of indirection decreases performance, so, although possible,
these frameworks are not really suited for this kind of data representation.
There are, however, lots of frameworks that focus specifically on providing a
useful multi-dimensional array interfaces to the user.

Basic Linear Algebra Subprograms (blas) libraries are the first that come to
mind, and they provide functionality for operating on arrays as vector and/or
matrices, so cu-/clBLAS can be said to to support multi-dimensional arrays,
although they simply work with data pointers and do not by themselves provide
any specific data container type. VexCL and SkelCL provides specific container
types for matrices[11, primitives.html][43, Matrix], but these seems to support
fairly little functionality, so they are probably works in progress and/or proof
of concepts.

ArrayFire
ArrayFire[45] is a framework focused around its 4-dimensional array container
object, which has an extensive library surrounding it. It is primarily a C/C++
library, but there also exists, at least as works in progress, a lot of alternate lan-
guage bindings. As with VexCL the framework is multi-platform, and it has the
possibility of switching between cuda, opencl and multithreaded cpu back-
ends either compile- or runtime, which in itself makes this an attractive frame-
work for research purposes, because it opens for the possibility of comparing
cross-platform performance of the same application[45, README.md].

The interface is designed for passing around materialized arrays, so it is very
similar to how you would program using a language like MATLAB. The similari-
ties are probably not a coincidence, given the fact that it has evolved alongside a
MATLAB gpu extension, and that the people behind it are, or at least have been,
involved with the development of the official MATLAB gpu support[21].

The ArrayFire library has functionality spanning many mathematical domains,
and, at least when it comes to extent of implemented functionality, it seems
to be, as far as I have come across, the most comprehensive open-source
gpu library. It has some support for automatically fusing simple functions
(e.g. C++ mathematical operators on the arrays) into jit-compiled special-

http://vexcl.readthedocs.io/en/latest/primitives.html
http://skelcl.uni-muenster.de/doc/group__matrix.html
https://github.com/arrayfire/arrayfire/blob/devel/README.md
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purpose kernels, and it has a construct for vectorizing⁴ more or less arbitrary
expressions, but most of the functionality consists of pre-programmed kernels
made available to the developers via a nice api.

3.3.3 Tensors
A tensor is a symbolic representation of a mathematical expression, and the fol-
lowing frameworks provide data types that when used in expressions represent
a symbolic parse tree of their combined operations. At some point in the pro-
gram these tensor are associatedwith input variables and lazily-built/evaluated
to produce the output variables. The main advantage to this sort of approach
is that providing the framework with a symbolic representation of the algo-
rithm gives it a greater opportunity to optimize the mathematical expression
(e.g. x = yz

y =
�yz

�y
= z) than if it were interpreted imperatively.

Theano[44] is a Python framework and mshadow[8] is a C++ framework that
provides symbolic tensor data structures, and evaluators. Theano is a library
for an interpreted language, so you explicitly build a kernel for evaluating some
given set of expressions at some point in your code, then you evaluate this as a
function over some given input data[44, II] to compute its output. The tensors
in mshadow, on the other hand, are programmed in a compiled language,
and they utilize C++ Expression Templates to optimize the expression into
fused kernels at compile time[8, guide]. Afterwards these kernels are use to
compute the expressions at run time. The expression templates in VexCL,which
are described briefly in Section 3.2.3, provides a similar sort of interface, but
these expressions are interpreted more explicitly, so there is no mathematical
optimization of the expressions, and they are expressing mutations directly on
data objects.

3.4 Abstract Parallelizers
OpenMulti-Processing (openmp)[38] is a set of compiler directives (C/C++/Fortran)
in widespread us that provides a portable method for describing the high-
level aspects relating to spmd code parallelization[38, 1.0]. Newer versions
of openmp have added support for offloading the parallelized computation
to dedicated accelerator hardware[38, D.2], but mainstream compiler sup-
port for these features is still in the development phase. Open Accelerators
(openacc)[37] is similar set of compiler directives, which have a greater focus
on the aspects of offloading the parallelization, and these directives are de-

4. Convert element-wise statements to operate on an entire vector in parallel.

https://github.com/dmlc/mshadow/tree/master/guide
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clared a bit more open-ended than the equivalent openmp directives, which
gives the compiler more leeway in its choice of how to parallelize the code[37,
1.0]. As with openmp computation offloading, mainstream compiler support
for openacc is still in the development phase. However, there are proprietary
compilers, such as the PortlandGroup, Inc. (pgi), that have extensiveopenacc
support already.

The idea behind these sort of compiler directives is that developers starts with
the source code for a working sequential application, then they annotate the
orchestration parts (e.g. loop constructs) of the source code with directives
that describes how the code should be parallelized.. These annotations are
designed to be optional to the compiler, so if they are simply ignored, either
by a compiler oblivious to their meaning, or by having their support disabled,
the compilation yields the original sequential program.

openmp constructs are designed to give users the ability to dictate explicitly
how the compiler is suppose to parallelize the code, and subsequently how that
would be achievable (e.g. where it would need synchronization). This approach
opens for the possibility of parallelizing applications that are sequential in
nature, but, by specifying how to orchestrate the parallelization, it may require
different approaches to suit different parallelization architectures. openacc,
on the other hand, takes a more lenient approach. Its annotations are meant
more as guiding information about the developer’s parallelization intentions.
This shifts more of the responsibility for how to parallelize the code over to the
compiler, which avoids the need for differentiating the parallelization scheme
for separate architectures. Whereas openmp provides explicit constructs for
handling synchronization, having similar functionality in openacc would
undermine the compiler’s choices for parallelization. Instead openacc offers
constructs for indicating data dependency information, and limits the scope of
the original applications to those that developers have already made inherently
parallelizable (e.g. no data races).

3.5 Language Bindings
Some people prefer to develop in non-C/C++ environments, so dozens of
language bindings for doing gpu development have been developed over the
years. I have come across low-level cuda and/or opencl interface ports
to languages such as, among others, FORTRAN[34, 1.2], Haskell[6], java[19],
Julia[18], MATLAB[28] and Python[24]. There seems to have been a bit more
development effort behind the language bindings for cuda than for opencl,
but there is a substantial diversity in both ecosystems.
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Simply porting the low-level interface gives developers the possibility of work-
ing in other languages, but many of these ports simply provide an interface
to that which resembles the cuda driver api, and still requires developers to
write native cuda/opencl kernel code. Other provides higher-level interfaces
(usually as an addition to the low-level driver api) that are better suited for the
language in mind and/or somehow tries to simplify gpu development.

PyCUDA/PyOpenCL provides a gpu container mimicking the NumPy’s n-
dimensional array structure, but it requires additional, and mysteriously com-
plex, libraries for supporting more than element- and vector-wise functionality.
The MATLAB Parallel Computing Toolbox provides a gpu array container
data type, which works, in most cases (i.e. supported by in excess of 300
functions[28, Run Built-In Functions on a GPU]), as a drop-in replacement
for regular MATLAB arrays. The aforementioned Haskell bindings only have
an interface resembling tensors or VexCL much more than the original low-
level api, and that is understandable given the language’s lack of imperative
programming constructs.

An alternative to creating language specific-extensions is to provide language
bindings on top of higher-level frameworks. ArrayFire, for instance, has, in
addition to its native C/C++ interface, stable bindings for Python and Rust,
and they are working on bindings for a lot of other languages[45, README.md].
There are also many language bindings to the most common domain-specific
libraries (e.g. [19, JCublas]), but, if they are not reimplemented from scratch,
they, as their corresponding low-level language bindings, tend to be verbatim
copies of the low-level interfaces.

https://se.mathworks.com/help/distcomp/run-built-in-functions-on-a-gpu.html
https://github.com/arrayfire/arrayfire/blob/devel/README.md
http://jcuda.org/jcuda/jcublas/JCublas.html
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cuda opencl License Language Description
CUDAfy.NET LGPL2.1 C# Low-level

- cl4d Boost D Low-level
CUDA Fortran - Proprietary Fortran Low-level

- FortranCL GPL Fortran Low-level
cuda5 go-opencl ? Go Low-level
jcuda jocl MIT/X11 Java Low-level

- WebCLa N/A JavaScript Low-level
CUDArt.jl OpenCL.jl MIT Julia Low-levelb

CUDALink OpenCLLink Proprietary Matematica opencl:low-level, cuda:blas1d

CUDA-minimal - Perl Perl Low-level
Thrust - Proprietary C++ Vectorc, blas1d

- Bolt Apache C++ Vectorc, blas1d

- Boost.Compute Boost C++ Vectorc, blas1d

- SkelCL MIT C++ 2D-matrix, blas1d

PyCUDA PyOpenCL MIT Python nD NumPy array, blas1d

VexCL MIT C++ Vector+sparse 2D matrix, blas2e

ArrayFire BSD C,C++,. . . 4D array, blas3f++
PCTg - Proprietary MATLAB nD array, blas3f++

mshadow - Apache C++ 2D tensor, blas3f

Theano - BSD Python 4D tensor, blas3f

accelerate BSD Haskell nD tensor, blas1d

CUB - New BSD CUDA C++ Reusable kernel patterns
Hemi - BSD CUDA C++ Portable kernel patterns

OpenMP N/A C,C++,Fortran Specific parallelization pragmas
OpenACC N/A C,C++,Fortran Abstract parallelization pragmas

a. No major browser or any other kind of JavaScript runtime environment supports it.
b. OpenCL version has higher ambitions of mimicking PyOpenCL, but that is work in progress.
c. Custom iterators can map more complex structure, but this gets complicated quickly.
d. blas level 1: vector operations, so elementwise and vector reductions (e.g. dot product).
e. blas level 2: Matrix-vector operations, so row-/colwise reductions (e.g. matrix dot vector).
f. blas level 3: Matrix-matrix operations, so matrix products and solve for matrix
g. Parallel Computing Toolbox

Table 3.2: Summary of high-level gpgpu frameworks



4
Experiment
This project does not have the resources to explore neither every application
domain nor every optimization framework, which yields a trade-off between
the experiment quality with respect to application generality and framework
representation. In order to avoid leaving out important optimization frame-
works, the experiment focuses on a few fairly general-purpose gpu processing
schemes that span many accelerator usage domains, so the choice has been
made to prioritize exploring framework diversity over how thoroughly each
framework is benchmarked.

Choosing how to best represent a wide range of application domains with few
benchmarks requires the different benchmarks to stress fundamentally differ-
ent usage scenarios. One of the major bottlenecks, if not the most important,
when it comes to gpu acceleration is memory access, so it is obvious that the
different benchmarks should try to cover different memory access patterns.
The external memory bus is, at least, an order of magnitude slower than the
internal gpu memory speed, so it is very important to minimize the amount of
data transfer between the gpu memory and other resources¹. However, there
are lots of applications where a high amount of external memory transfer is
inherently unavoidable. The most common of these is any application that
works on a dataset much larger than what can fit within the limited memory
space of the gpu, which requires them to work on smaller chunks one at a

1. The most common external resource is cpu memory, but memory of separate gpus and
other i/o-devices are also relevant.

23
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time. This sort of processing scheme is known as a streaming pipeline, and is
the basis for the benchmark described in Section 4.2.

The pipeline approach, although relevant, has the inherent problem that the
memory transfers tend to mask differences in computing performance, which
makes it unsuitable for a benchmarking compute intensive applications. There-
fore, as a means of representing a wider range of applications, an alternate
benchmark taking the opposite approach has been devised. This benchmark,
which is described in Section 4.3, reuses the same data over and over again
during its computations, which yields a fairly fixed memory footprint, and by
limiting the workload, such that the entire problem fits within the gpu’s mem-
ory, unnecessary (i.e. all but transferring input arguments and results from/to
CPU) memory transfers are avoided.

Together these benchmarks are supposed to represent a great deal of general
purpose problems that are commonly accelerated by utilizing gpu computa-
tion resources. Both benchmarks are based on real problems that physicists
at the university are exploring the possibility of accelerating on gpus, so
the implementation obstacles presented are real, and therefore relevant to
discussion about the framework interface differences. The physicists kindly
provided CPU-based reference implementations written in MATLAB, with no
regard for how to optimize the problems for gpu computation. The following
sections presents simplified summaries of the problem domain for these bench-
marks. More information can be found in [13, 2](algorithmic overview) and
[12](statistical analysis).

4.1 Experimental Setup
The experiments are conducted on a Hewlett-Packard (hp) Z820 workstation
with a NVIDIA Tesla K20 hpc gpu. The workstation has dual octa-core Intel
cpus² and 32GB of Error-Correcting Code (ecc) system memory³.

The gpu is a Peripheral Component Interconnect Express (pcie) Gen2 x16 ex-
tension device with a single gpu⁴ and 4.8GB ecc memory. It has a theoretical
208GB/s intra-device memory rate[29, p. 2], and its theoretically 8GB/s[40,
p. 38] pcie bus rate is the bottleneck for inter-device (including system mem-
ory) communication. The system drive is a 256GB Solid State Drive (ssd)⁵

2. Two Intel Xeon E5-2690 (2.9GHz) octa-core cpus with hyperthreading disabled.
3. Two 8GB HMT31GR7EFR4C-PB DDR3 1600MHz memory sticks per cpu socket.
4. A GK110 with 2496 thread processors at 706MHz[29, p.12]
5. A 256GB Micron MTFDDAK256MAM ssd.
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connected via a Serial ATA (sata) 6Gb/s interface⁶.

4.1.1 Dataset
This project uses satellite data from the ESA Copernicus project, which is
freely⁷ available through their data portal. The data used in this project
are sar scenes from the Sentinel 1 mission with dual-co/cross polarization.
sar records intensity and phase of reflected radar waves and represent this
as complex numbers[15, 1.1], but various gpu frameworks have inadequate
complex number support, so this project limits its data range to Ground Range
Detected (grd) products, because those only contain intensity data (i.e. real
numbers).

(a) Entire scene (Section 4.2). 25289 × 19431 (b) Cropped to San Fransisco
(Section 4.3). 1500× 2000

Figure 4.1: Satellite scene over San Fransisco used throughout the experiments. This
particular scene is flipped horizontally, but that is simply a natural effect of
the satellite’s acquisition path, and is totally irrelevant to the benchmark.
Red:vv, green:vh, and polarizations have been normalized around their
respective means separately. Copernicus Sentinel data 2016.

Figure 4.1 visualizes a satellite sar scene⁸ overlooking the San Fransisco Bay
Area, and this scene is used as the dataset throughout the following experi-
ments. The entire scene is about half a gigapixel in size, which, represented as
single precision floating points, yields an almost 2GB large matrix per polariza-
tion.

6. A port on the integrated LSI SAS2308 sas controller.
7. Sentinel Data license resembles CC-BY-3.0, see https://sentinel.esa.int/

documents/247904/690755/Sentinel_Data_Legal_Notice for details.
8. S1A_IW_GRDH_1SDV_20160429T141541_20160429T141610_011037_01099F_6340

https://creativecommons.org/licenses/by/3.0/
https://sentinel.esa.int/documents/247904/690755/Sentinel_Data_Legal_Notice
https://sentinel.esa.int/documents/247904/690755/Sentinel_Data_Legal_Notice
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The pixel data used by the experiments have been radiometrically calibrated
using ESA’s Sentinel Application Platform (snap) toolbox, and converted⁹ to
files storing memory dumps of column-major matrices.

4.1.2 Intermediate Files
The benchmarks span language domains and are designed to be decoupled, so,
for testability and making smaller parts of the benchmarks comparable, data
is read and, optionally, written to the filesystem. This decoupling adds a bit
of overhead when compared to an application that does everything in one go,
but, as these benchmarks are not supposed to be run together, the impact to
the overall runtime is ignored.

MATLAB stores variables as a compressed key-value store[28, save()], Ar-
rayFire has a similar file format[45, af_save_array()] and most simple raw
image format stores data in a row-major fashion. Neither of these alternatives
are very practical nor easy to use, so the intermediate files are simply raw mem-
ory dumps of a single array. The files are designed to minimize the overhead of
dumping data to files, and during experiments the files are stored on a tmpfs,
so the data is only kept in memory and is never written to disk[42].

The file format is literally raw column-major multidimensional array data,
nothing more and nothing less, which makes it possible¹⁰ to memory map the
entire file and obliviously use this as the storage backend for any regular array.
Metadata is stored as part of the file suffix¹¹, and is parsed/generated by the
applications when the files are read/created.

4.1.3 Instrumentation
An early version of one of the benchmarks was designed to decouple the
particular computation task from the remaining parts of the benchmarking
framework. This was implemented by having one orchestrating process that
spawned differently implemented workers. The idea was meant to avoid subtle
differences in the chunking procedure, but it turned that the thread spawning
process imposed such a considerable delay, that any timing measurements
would have been useless. This approach was eventually scrapped in favor of a

9. Calibrated scene exported as BEAM-DIMAP, image data converted from network to host
endian and pixels reordered from row-major to column-major.

10. Memory maps have the possibility of being offset, but only page-aligned[20, mmap()], and
a page is a fairly large overhead for a dozen bytes of metadata.

11. cmx file suffix := .cmx _d 1x · · · xd n , x being an ArrayFire data type[45, enum af_dtype]
(e.g. f32 for single floating point) and d i for the size of i-th dimension.

https://se.mathworks.com/help/matlab/ref/save.html
http://arrayfire.org/docs/group__stream__func__save.htm
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html
http://arrayfire.org/docs/defines_8h.htm#a023d8ac325fb14f1712a52fb0940b1d5
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simpler chunking scheme reimplemented by each worker, but the lessons from
this detour influenced future timing instrumentation.

The initial timing instrumentation was external¹², because the framework’s
bootstrapping time was considered a relevant part of the total benchmark
execution time. This approach would automatically bias native applications,
because others would also be spawning their accompanying runtime system,
but this bias is natural, and not particularly wrong.

The idea behind taking bootstrapping time into account was based on the as-
sumption that the applications were supposed to be standalone, as in, who uses
an interactive Python session to start their programs? In a scenario where the
execution time of running a Python script is compared with that of running a
native applications the difference is noticeable, but the overhead is in the order
of tens of microseconds. Then a gpu MATLAB implementation was developed,
which was frustrating enough just to develop into a standalone application¹³.
Running this implementation highlighted the fact that the spawning of the
MATLAB interpreter itself takes about 10 seconds alone, and that sort of handi-
cap (i.e. longer than many of the experiments) for simply being an interpreted
language would have been a bit too much. It also turns out that lots of MATLAB
developers do actually keep a running interactive programming session where
they both develop and execute their code, who knew?

The result of this observation was a change of mind when it comes to timing
measurements, so from that point onwards measurements were being taken,
and reported, internally by each implementation. The distinction between
bootstrapping and other kinds of initializations are a bit vague, so, when
bootstrapping delay is already ignored, then the measurements are just as well
taken as close to the actual benchmark as possible.

Event based timing data relative to the start of the applications are logged to
the application’s output, then the log output is being post-processed to convert
timestamped events into total runtime. The timestamps are based on wall-clock,
as opposed to cpu, time, so that potential multiprocessing within frameworks
is counted as total user observable runtime, instead of thread-accumulated
cpu resource consumption, because that would be a very irrelevant measure
for comparing gpu applications.

12. At that point the total runtime was measured by wrapping the application execution with
the shell’s time measuring functionality.

13. Its “main” function ended up being wrapped by a bootstrapping shell script, in order for
the result to be capable of shell execution.
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4.2 Streaming Pipeline Benchmark
This benchmark is a sar image data preprocessing step that extracts statistical
features from polarized sar data into a more suitable basis for subsequent
terrain clustering.

The preprocessing consists of a noise-reduction step and a part that extracts a
set of statistical features emphasizing terrain differences. Intensity sar data
is more or less regular pixelated image data where the different polarizations
can be thought of, and are often visualized, as colors. The noise-reduction part
is a blur filter¹⁴ and the feature extraction relates to converting the image’s
color scheme (e.g. Red, Green and Blue (rgb) to Hue, Saturation and Value
(hsv)) in order to extract other kinds of information.

All, but the averaging process, work on elements independently, and the av-
eraging process is element-wise independent given read-only (i.e. separate
from output) input data, so the entire process is more or less embarrassingly
parallelizable. Additionally, the locality dependency of the averaging process
is limited to a fixed window centered around every pixel, so the workload can
be chunked into arbitrary submatrices given half a window of padding pixels
around the edges of its input.

4.2.1 Multilook
sar data has inherent speckle noise caused by how the illuminated surface
scatters the reflected radar waves[15, 1.8]. A common noise reduction approach,
and the one that is utilized in this benchmark, is known as multilook. Multilook-
ing trades off resolution with increased signal-to-noise ratio by averaging away
the uniformly distributed speckle noise. One of the methods for multilooking
sar data is by low-pass filtering the measurement intensity[15, 3.8], and the
implementations in this project does that by averaging every pixel with the
values of neighboring pixels within some given range.
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Figure 4.2: Convolution filter (overlapping blue) around the red pixel. Window size:
lx = 11, and constant weights: ∀iwi =

1
lx

(i.e. averaging)

Figure 4.2 visualizes an 1-dimensional version of the filtering procedure for a
given pixel. Convolution is a generic type of filter where relative neighboring
pixels are associated with their own weight, and the resulting value for the

14. For multilooking every pixel is weighted equally, whilst regular blur filters use a Gaussian
convolution (i.e.. weighting diminishes with radius from origin pixel).
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origin pixel is the sum of these weighted pixels. In this particular usage case
the filter is an equally weighted average (i.e. constant weights), so some of the
implementations are optimized by scaling the sum of the raw pixels, instead
of scaling each pixel before they are accumulated.

The procedure averages pixels along one dimension at a time, which has
O

(∑ndimension
d=1 ld

)
, with ld being the window size (i.e. the number of neighboring

pixels to consider) for a given dimension. Since the input depends on the
previously averaged dimension, this approach is not perfectly parallelizable,
but it easily outperforms the naive, and equivalent, approach of doing all
dimension in a go, because that has O

(∏ndimension
d=1 ld

)
. The computation needed

for the averaging process scales linearly with the window size, so this is left as
a parameter¹⁵ to the benchmark.

4.2.2 Feature Extraction

(a) logrk (b) logmrcs (c) logrcr

Figure 4.3: Extended probabilistic features computed in Section 4.2. Averaging win-
dow: lx = ly = 5. Cropped to the subset passed along to Section 4.3.

The intention behind this benchmark is to convert the image data into a basis
that better represents the variation of the illuminated surfaces, and the result
is visualized in Figure 4.3. The idea behind this visualization is to show that
the different features are emphasizing distinct areas of the image, but urban
areas are complicated scenes with lots of details, so this distinction is not that
clearly visible.

This thesis focuses on the computational problem, so for precise definitions of,

15. For multilooking, the window size is realistic in the range 5 to 100 depending on what the
sar data is supposed to be used for
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and more discussion about, the particular features, see [13, 2.2].

Relative Kurtosis (rk) is a property of how each pixel relates to its neighboring
pixels, so its computation incorporates the same averaging procedure as the
multilooking process. Apart from that, the entire feature computation boils
down to 3npolarization + 7 elementwise math operations.

4.2.3 Chunking
The workload is intentionally chosen to be larger than what can fit within
the memory area available to the gpu, which requires the process to work
on a subset of the workload at the time and stitch the result of every subset
computation together into one coherent output. The chunking procedure
has been designed to be as simple as possible, in order to avoid accidental
differences between implementations, and therefore, minimize the extent to
which the chunking part of this benchmark impacts the results.

Matrices in this project are stored in a column-majorly fashion, and, for simplic-
ity and memory localization, the chunking process operates on sets of entire
columns. These column subsets overlap the input data of bordering chunks
with enough padding to accommodate enough neighboring pixels for the aver-
aging processes to yield valid results for the entire chunk. In a real application
the chunk size would be estimated based on the available gpu memory and
the required memory footprint, in order to maximize the resource utilizations,
but, for the sake of the experiment and to simplify doing it identically across
multiple implementations, this is left as a statically configurable parameter of
the benchmark.

4.2.4 Performance Results
Figure 4.4 presents the performance results from the streaming pipeline exper-
iment. The different subfigures plots total runtime as a function of either the
chunk size with a fixed multilook window size (i.e. workload) (Figure 4.4a);
or the other way around (Figure 4.4b).

First of all these plots have two cpu versions: MATLAB (yellow) and OpenMP
(blue diamond); and two opencl versions: ArrayFire (green) and VexCL
(red). The OpenMP version have been added as a baseline because this is an
embarrassingly parallelizable problem, so it required a total of 5 pragmas to
a sequential C++ implementation that was needed by one of the frameworks
anyways. High-level gpu MATLAB code is a matter of initializing arrays on
the gpu instead of the cpu, so the MATLAB cpu version have simply been
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Figure 4.4: Streaming pipeline performance. Lower is better. Error bars indicate min-
/maximum runtime out of 5 repetitions. The dotted vertical lines indicate
the fixed value for the other subfigure.

generated by replacing all of the gpu array initialization with initialization
of regular arrays. The opencl versions are from frameworks that support
interchangeable backends, so they are simply compiled with other parameters
than their cuda counterparts.

cuda (cyan star) is the low-level gpu implementation, and a low-level sequen-
tial C++ implementation have been used as the identical basis for automatically
parallelized OpenACC (maroon filled circle) and OpenMP implementations.
Thrust (pink) and VexCL (gray) are different frameworks where the kernel
code have been generated from abstract C++ templated code instead of being
handwritten in cuda C. ArrayFire (black), MATLAB (teal) and the PyCUDA
(light blue circle) implementations are written as mathematical operations on
matrix types.

Thrust and PyCUDA utilize the multilook procedure from the low-level cuda
implementation, but apart from that all the implementations are written uti-
lizing their respective frameworks’ api.
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4.3 Compute-Intensive Clustering Benchmark
External memory transfer is expensive on gpus, and the benchmark described
in Section 4.2 primarily represents problemswhere such behavior is unavoidable.
However, that is not always the case, and, whenever possible, gpu applications
tend to minimize the need for external memory transfers. The following bench-
mark is a pattern clustering algorithm used to detect distinct terrain classes,
and it avoids unnecessary memory transfers by limiting its memory footprint
to something that fits within the available gpu memory.

The algorithm depends on frequent reductions over the entire workload, so
having a workload larger than the available gpu memory instantly causes
thrashing problems, and in such a scenario getting any notable performance
would be unrealistic. Scaling up the gpu memory space by chunking the
workload among a cluster of gpus with enough combined memory, and only
transferring partial aggregates between them, is a possible workaround to
the thrashing problem. However, clusters of gpus are outside the scope of
this thesis, and, in any case, there already exists extensive research on the
topic[9, 14].

4.3.1 Automatic Mixture of Gaussian
The clustering algorithm is known as Mixture of Gaussian (mog)[13, 2.4],
and, briefly described, it uses an Expectation-Maximization (em) algorithm to
iteratively converge a given set of statistical models¹⁶ such that they best fit
distinct subsets of samples. This algorithm considers samples independently
and is agnostic to what constitutes a sample. For this particular problem the
samples are vectors of features precomputed by the benchmark described in
Section 4.2.

The automatic part of the algorithm refers to it starting with the entire dataset
modeled as a single cluster, and hierarchically splitting the worst fitting cluster
until every cluster fits some distinct set of samples fairly well, or it reaches
some given maximum number of clusters. Determining the worst fitting cluster
constitutes a fairly comprehensive weighted binning procedure, but refitting
the clusters with the em algorithm after each split is still the primary com-
putational hotspot. When the clustering algorithm completes, the final set of
statistical models, which can be used to classify samples, is returned (i.e. saved
to filesystem) for future use (e.g. testing correctness).

16. Mean and covariance of the samples within that cluster and the overall probability that a
sample belongs to that particular cluster.
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The number of distinguishable clusters depends on the particular set of samples,
but the overall trend is that the number of clusters the algorithm considers well-
fitting rises with the amount of available samples, and during the experiments
it ranges from a couple to a maximum of 20 clusters. Predicting how many
em iterations are needed to refit a particular set of clusters is no easy task,
but the trend seems to be that it ranges from tens to a couple of hundred
iterations.

Each em iteration requires many reductions over the entire set of samples
and lots of elementwise operations, so the amount of computation per sample
during a single iteration amounts to a fair bit more than that needed for a
single sample in the data pipeline benchmark. And, when these iterations are
repeated hundreds of times, the total amount of computation easily makes
copying the input samples to the gpu and the final statistical models from it
neglectable with respect to the total performance.

4.3.2 Data Reduction
This is a computational expensive algorithm, and its computational effort is
more or less proportional to the amount of input data it is given, so giving it
tremendous amounts of data causes a tremendous amount ofwork. The cropped
satellite image visualized in Figure 4.1b already contains enough samples to
start making problems, and that image covers a fairly limited geographical area.
Reducing the amount of computation is useful, if not essential, when it comes
to getting results in a timely fashion (e.g. running my benchmarks), but that
is not the only downside of working with large datasets. One of the insolvable
problems is that the cuBLAS[30] library, which is an internal dependency in
some of the relevant frameworks, has a per dimension limit¹⁷ of around a
million samples. Another more practical, and even more limiting, problem is
that the part of the algorithm that determines what is a fairly well fitting set
of clusters works best with a fairly limited number of samples.

This particular project focuses on the computational load, so it is irrelevant
to the experiments themselves which part of the data the benchmark ends up
classifying. However, in any practical application the clustering task would be
associatedwith a specific area to work on, so simply taking then first samples, or
some other arbitrary submatrix for that matter, would not necessarily represent
the intended area.

17. This library seems to be limited to 2-pass reductions, and each pass reduces elements
blockwise, so there is a upper bound of n2Threads per block elements, which is 10242 on
current hardware.
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The resulting classifiers’ application domain is the type of data that the clus-
tering algorithm was given, so, in order for them to classify a specific satellite
scene, the clustering algorithm must be given samples that represents the ter-
rain in that particular scene. Regular image downscaling uses filters that yields
pixels striving to represent the diversity of what was removed (e.g. blockwise
averages). That sort of data reduction scheme is an example of a method that
would not preserve the properties of original samples, and which would yield
a set of classifiers not suitable for the original dataset. It could, for instance,
include a cluster that represents the average of a forest, whilst in the original
scene that particular forest could consist of separate forest patches with varying
degree of denseness, all of which differs from their combined average.

The data reduction approach in this benchmark is linear subsampling (i.e. drop-
ping all but every nth sample). This approach uses real samples, and hopefully,
gives a statistical representative view of the diversity within the intended area.
The subsampling rate is used as a parameter of the benchmark’s computational
workload, but it should be mentioned that different subsampling rates yields
entirely separate views of the data, so there is no guarantee that they yield the
same clusters or need the same amount of work to complete.

4.3.3 Performance Results
The clustering workload is not directly proportional to the number of samples,
so any interpretation of the following results requires some background infor-
mation about which factors impact the application’s workload. The workload
is somewhat dependent on the size of the input data, because mathematical
operations scattered around the benchmark work with vectors and/or matrices
that are proportional to the number of samples, so there is an underlying trend
that the amount of work is proportional to the number of samples.

However, the total workload depends on how many iterations the mog algo-
rithm needs before it considers each set of cluster to be converged, and how
many clusters the application deems necessary for them to fit the data well
enough. Section 5.2.4 concludes that this benchmark’s major computational
hotspot is the process that converges the statistical models, and each iteration
of this process requires the same amount of work, but this amount depends
on the number of clusters the process works on at that particular point in
time.

These benchmarks are supposed to be deterministic, so, although the change
in workload is not proportional to the change in input size, that does not mean
that implementations are not comparable when they are given identical input.
However, there is a caveat that the algorithms aggregates lots of single precision
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floating point values, which also aggregates their individual inaccuracies, and
both the convergence procedure and the test to determine whether a set of
clusters is well fitting enough (i.e. the application’s exit condition) are very
sensitive to inaccuracies. gpu hardware has support¹⁸ for ieee standardized
floating point calculation[31, 4.4], but there may be subtle differences between
the implementations, and, in any case, they are not necessarily ordering their
floating point calculations identically. The end result is that there are consider-
able workload fluctuations among the different implementations, which need
to be taken into account when the performance data is analyzed.
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Figure 4.5: Clustering performance with varying input size. Lower is better. Error bars
indicate min-/maximum runtime out of 5 repetitions.

Figure 4.5 presents the performance results from the clustering experiment.
These results have been plotted alongside an estimate for how much work-
load each particular implementation went through during the measurement,
because any relative performance will need to consider their respective work-
load.

In order to produce more easily comparable results, Figure 4.6 presents results
from the same benchmark, but in this experiment the workload has been

18. They also support a faster alternative, and whether to use one or the other is software
configurable, so there is always the possibility that some of the frameworks have disabled
ieee standardized calculation internally.
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Figure 4.6: Clustering performance with varying input size, and parameters forcing
workload to be proportional to the input size. Lower is better. Error bars
indicate min-/maximum runtime out of 5 repetitions.

forced to be proportional to the number of samples. The difference between
this simulation and the real application is that the amount of work needed to
consider a set of cluster models converged and when clusters are considered
well fitting are fixed, instead of being determined by the application.

These experiments consist of 4 base implementations: ArrayFire (black), Python
bindings to ArrayFire (orange), MATLAB (teal) and low-level cuda (cyan star).
As with the previous experiment, the MATLAB version also has a CPU derivate
(yellow), but the ArrayFire opencl version have been dropped in favor of the
possibility of substituting parts of the ArrayFire implementation with parts from
the low-level implementation. There are also some minorly diverging versions
of the cuda implementation and the ArrayFire implementation.

Development of a PyCUDA version was also started, but that development track
was eventually abandoned. Nevertheless, that work lead to the development
of low-level customized matrix product functionality, which, along with the
reasoning for dropping the PyCUDA implementation, are discussed further in
Section 5.4.1. This functionality is used by the basic cuda implementation, but
it also yielded a diverging implementation, cuda cuBLAS (dark blue), which
instead uses equivalent cuBLAS routines for calculating matrix products.
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There was also some work on implementing a Thrust version, but it turns
out that trying to implement the benchmark using vector iterators would
require way too much effort than it could ever be worth, so, as with the
PyCUDA implementation, this development track was eventually scrapped.
Thrust is designed to cooperate with cuda, so there is not necessarily anything
wrong with delegating that which is easier to implement as low-level code
to cuda, and the results is the cuda Resource Acquisition Is Initialization
(raii)¹⁹ implementation (dark orange). This diverging version utilizes the
Thrust vectors as dumb data containers,whose allocatedmemory is managed as
a regular C++ object (i.e. allocated when it comes into scope, and deallocated
when it leaves the scope), as opposed to the optimized cuda version, which
allocates all the memory it will require during its entire lifetime before it starts
doing any computation.

The ArrayFire forks are versions where parts of the algorithm have been sub-
stituted with the same low-level implementations that is used in optimized
cuda versions. These substitutions are allocating temporary arrays, so their
results are most comparable to the raii version of the cuda implementa-
tions. The score version (pink) optimizes the scoring procedure and the MoG
Expectation-Maximization (mogem) version (gray) optimizes the convergence
procedure.

19. Named after the C++ resource management scheme.





5
Discussion
This discussion starts in Section 5.1 with a summary of some notable differ-
ences between the separate implementations,whichwill become relevant when
these frameworks are being compared. Then it continues with the performance
evaluation in Section 5.2, before you all have forgotten the results from the
experiments. In Section 5.3 it continues with briefly describing how the cor-
rectness of these implementations has been tested, and this chapter finishes
with Section 5.4, which is an evaluation of my experiences from programming
using these different frameworks.

5.1 Notable Implementation Differences
The loop structures in the basis for the openmp implementation is optimized
for gpu and other forms of highly parallelized implementations, while opti-
mized multiprocessing cpu implementations have a whole other set of consid-
erations when it comes to how a problem is optimized. This implementation
should therefore be considered more of a proof-of-concept than an optimized
cpu implementation. The averaging task at hand, for instance, has much better
solutions if you work on an entire window of data the same time, which is
doable with static workload orchestration of continuous data blocks, which is
the approach used by naive parallel-for constructs in openmp.

The ArrayFire implementations, among others, utilize convolution function-

39
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ality from their library, as an alternative to the averaging procedure in the
pipeline benchmark, and ArrayFire’s particular convolution implementation is
limited to a window size in the interval [0, 31], which is the reason why these
implementations drops off after the 30 measurement in Figure 4.4b.

The streaming pipeline implementations are designed to minimize the amount
of unnecessary data buffering, but the extent to which this is possible depends
on the framework. All the C++ implementations work on memory mapped
buffers provided by some common chunking module, so these applications have
no cpu buffers. Input/Output (i/o)-backed memory mapping only works for
valid file data (i.e. areas beyond the End-Of-File (eof) are not writable), so,
before memory mapping of the data, the C++ implementations seek to where
the file should end, and writes a zero, which implicitly allocates zeros between
the previous eof (i.e. start of file) and the newly written byte[20, lseek()].
MATLAB supports memory mapping, but it lacks the support to seek beyond
the eof, so it is limited to explicitly writing chunk after chunk to output files,
which requires it to have one, or more likely two¹, application buffers of the
data. Python also have memory mapping support, but the Python bindings for
ArrayFire do not support dumping an array directly to a memory address, so
the outputs are application buffered as regular NumPy arrays before they are
copied to the memory mappings.

Some statistical functions used in the scoring part of the clustering algorithm
were missing from all of the gpgpu frameworks, so the calculation of those
are delegated to the cpu. This imposes some unfortunate memory transfer of
the arguments and the results, but it concerns fairly small amounts of data,
so it is acceptable, and, in any case, it presents a scenario that is relevant for
discussion. More about that in Section 5.4.1.

All the opencl backends, the VexCL cuda, and the PyCUDA implementations
are jit-compiling the gpu kernels. They cache their compiled kernels for the
rest of the application’s lifetime, so the compilation only yields an initial com-
pilation overhead, and VexCL even caches its kernels persistently (i.e. writes
them in the user’s home directory) for later runs. This gives these implementa-
tions the possibility of optimizing for known runtime parameters (e.g. fixing
thing to size of input and better loop unrolling heuristics), but the fact that
the compilation process impacts runtime performance also discourages com-
putationally expensive optimization. The cuda compiler, on the other hand,
is designed to perform very extensive optimizations to the gpu code during
its compilation phase.

1. One copy at the user-level and one in the underlying C file handler.

http://pubs.opengroup.org/onlinepubs/9699919799/functions/lseek.html
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5.2 Performance
First of all, the cpu and opencl versions have been added to help put the
results in perspective, but these will not be the focus of the discussion. And,
when we are on the topic of cpu implementations, the backend used for
openacc/openmp could also have been compiled as a sequential version,
and there is a sequential ArrayFire cpu backend, but both of these have been
left out of the experiment because they are an order of magnitude slower then
the already slow openmp version, so they would have skewed the results, and
increased the time it would take to run the benchmarks, which are already
taking an annoyingly high amount of time to finish.

5.2.1 Runtime Variation
The values plotted in Figure 4.4, Figure 4.5 and Figure 4.6 are means over 5
repeatedmeasurements,with error bars indicating theminimum andmaximum
runtime measurements, as a means of indicating that these are repeatable
results. Each experiment (i.e. running every repetition of all implementations
with one fixed set of parameters) randomizes their execution order, as a means
of distributing the measured impacts from potential error sources evenly among
the implementations.

This is a dedicated machine, and there is no intentional background load whilst
running experiments, but the machine runs regular Linux with a graphical
user interface, so there is always lots of background processes that can have
minor impacts on the measurements. Figure 4.4 shows that the runtime of the
multiprocessing openmp implementation varies most of all them all, but this
is to be expected, because that implementation utilizes all the cpu resources
it has available, which makes its performance much more susceptible to the
load variance of the other background processes. The multiprocessing cpu
version of the MATLAB implementation measures much more stably than the
openmp implementation, but in comparison the MATLAB implementation
does not, maybe even intentionally, utilize more than about half the available
cpu resources, so then there is lots of spare load left for the other background
processes.

In all the experiments the trend seems to be that the measurements from gpu
implementations in interpreted languages, MATLAB and Python in this case,
seem to vary a bit more than the implementations in compiled languages,
but, that being said, there are also noticeable variations among some of the
measurements for implementations in compiled languages. However, the over-
all measurement variance is not very substantial, and, in any case, whenever
measurements from separate implementations are periodically bordering each
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other’s variance they are considered having more or less equivalent perfor-
mance.

5.2.2 GPU vs. CPU
The streaming pipeline experiment shows in Figure 4.4b that given enough
work on the gpu, every implementation managed to outperform the multi-
processing cpu implementations. As pointed out in Section 5.1, the openmp
implementation is not a fair opponent, but nevertheless the extent of the per-
formance gap between it and the gpu implementations, and the fact that the
cpuMATLAB version shows similar results, makes this a fair suggestion.

Even at a fairly small workload, most of them manage to outperform both
16-core multiprocessing implementations, despite needing to transfer data
back and forth to the gpu. It is also notable that Figure 4.4a indicates that at
smaller block sizes, and this is still in the order of megabytes, the overhead of
spawning multiprocessing threads (i.e. openmp) outweighs the overhead of
transferring data and executing parallel code on the gpu. Although not a very
novel observation, it was still a surprising results, given the intuition that gpu
memory transfers are fairly expensive operations.

The Figure 4.6 does not show as clear a distinction between gpu and cpu
implementations for the clustering benchmark, which might indicate that some
implementations would prefer larger computational task. The cpu contestant
in this benchmark is a MATLAB implementation, and, although I am neither
postulating that I write perfect MATLAB code nor that there are not any better
suited frameworks available, this algorithm is smack in the middle of MATLAB’s
intended problem domain, so the various matrix operations should be fairly
optimized.

The fact that the gpu MATLAB version is consistently worse than its cpu
counterpart indicates that the extent of the code MATLAB manages to paral-
lelize to the gpu is outweighed by the work it requires MATLAB to do on the
cpu.

5.2.3 GPU vs. GPU
There was supposed to be little focus on opencl, so let us start by getting
those implementations out of the way. ArrayFire and VexCL were the only
implementations with opencl backends, and these backends were only a
part of the streaming pipeline experiment. The ArrayFire version beats the
VexCL version with about a second in total runtime, and the ArrayFire version
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is consistently in excess of a second slower than its cuda alternative. These
results are not very surprising, given the fact that these cuda version uses
precompiled² kernels, whilst opencl implementations compiles them as part
of the applications, which easily can add a second to its total runtime, and, in
any case, these differences have not been explored any further.

Streaming Pipeline
Both Figure 4.4a and Figure 4.4b places the MATLAB implementation about 15
seconds above any other implementation, which for these parameters consti-
tutes about a doubling in runtime, but at least it does not seem to be increasing
any more than the others when the workload increases. The caveat described
in Section 5.1 about some double buffering of the output, might be one of the
relevant factors, but, as the other implementations suffering similar problems
fall much closer to the remaining implementations, this alone would not be
enough to explain this performance difference.

The other implementations in interpreted languages (PyCUDA and ArrayFire
Python) seem to have more or less equivalent performance, and they seem
to be the next worse implementations with a runtime trending at between 3
and 5 seconds longer than the best implementation. After that, the openacc
implementation, with in excess of a second longer runtime than the best
implementation, is the only remaining implementation whose performance is
separable from that of the remaining implementations.

Interpreted languages are usually a bit slower than native ones, so the fact
that those have a bit higher overhead is not that surprising. The runtime
differences between the frameworks have intentionally been stated in absolute
terms, because Figure 4.4b clearly shows that an increase in workload causes a
parallel shift to the runtime of all the implementations, which indicates that the
differences between the frameworks is a more or less constant overhead.

If these runtime differences had been anything but constant, then there might
be a reason to explore optimization paths further, but you would need some
very specific reason for justifying any notable development effort resulting in
shaving a couple of seconds from the total runtime of any application. That
brings us to major highlight from a benchmark like this one, which is that if
you are computing fairly little on a gpu in one go, then the room for potential
optimization and differences between high-level and low-level frameworks will
be fairly limited. The results from the MATLAB implementation shows that
there are frameworks that internally clearly do something wrong, and analysis

2. VexCL jit-compiles cuda kernels also, but these are cached from previous runs.
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shows that in this particular case the problem is memory access. More on that
in Section 5.2.5.

Clustering
Once again, Figure 4.6 presents MATLAB with the price for longest runtime, but
this time there is a much greater span amongst the different frameworks. The
other implementations in interpreted languages, which is now, unfortunately,
down to only the Python binding for ArrayFire, grab the next worst position, but
that is understandable, considering their remaining opponents is the equivalent
C++ implementation and even more optimized ones. However, this time
ArrayFire separates itself muchmore clearly from the low-level implementation,
so, given this more computational expensive benchmark, it is clear that this
time, implementing code in a low-level framework has a much greater impact
on the overall performance. MATLAB suffers similar problems as before, and
all hope is not lost for ArrayFire, but more about that in Section 5.2.4.

The most notable observation from Figure 4.6 is that workload increase yields
a much steeper increase in the C++ version of ArrayFire than its Python
binding counterpart. This can probably be associated with the cpu parts of
the Python implementation requiring more time to execute, which results
in more gpu idling, so increasing workload probably fills up some buffer
of underutilized gpu resources, which causes a smaller impact on its total
performance. However, and as the trending at the end of Figure 4.6 begins to
indicate, these implementations will surely level off eventually, because having
the Python bindings surpassing the performance of the equivalent native C++
application would be a fairly unrealistic scenario.

5.2.4 Hotspot Exploration
All of the gpu frameworks that are a part of this survey have some sort of
method for incorporating low-level gpu code. This facilitates scenarios where
you start by writing the entire application in a high-level framework, then you
figure out which parts are worth optimizing, and only reimplement those, as
opposed to the entire application, as low-level gpu code. Such an approach
is a compromise between development effort and the performance of the
applications, and prioritizing the optimization of code snippets that have the
most impact on the performance have a tendency to pay off in the end.
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Instrumentation
There is no fundamental difference in how you profile execution time for gpu
applications in comparison to cpu applications, but there are some pitfalls.
First of all, many profilers default to measuring cpu time consumption, which
yields irrelevant, or even misleading, information when instrumenting the gpu
parts of an applications. This is caused by the gpu working in parallel with
the cpu, and, if you are not explicitly using the cpu for other computation,
it usually blocks idly on some sort of gpu synchronization primitive³, which
usually does not consume any notable cpu resources.

The profilers that measure wall-clock time spent at the different points in the
program do not have the same problem, but they are still tracking where
the cpu is spending its time (i.e. at the synchronization points). However, if
there are synchronization points (e.g. returning some value computed on the
gpu) in a function, then the computation time of that function is accumulated
correctly at the granularity of said function, but it is important to remember
that time spent in preceding functions without synchronization points might
also be accumulated at this point. This works well for apis that synchronize
everywhere, and at a granularity where the cpu somehow has to be involved
with planning of the gpu’s execution flow, but it requires intimate knowledge
about where the code synchronizes the cpu and the gpu.

There are tools, such as nvprof[33, 3] for cuda, that profiles gpu execution
time, but their results are not always as easy to backreference with the cpu
application code. If you have specialized kernels that are only called from one
place in your code, then this is very helpful to determine where the compu-
tational hotspots are in your code, and, of course, you are given information
about which parts of the gpu code would most benefit optimization. General-
purpose frameworks, on the other hand, either use general-purpose kernels
(e.g. ArrayFire’s reduce_first_kernel), which will be scattered around the
source code and nevertheless aggregated together; or generate ones with un-
decipherable⁴ names. The general purpose ones tend to have fairly descriptive
names (e.g. matrix multiplication kernels usually includes the blas abbrevi-
ation gemm), so you can get a feeling of which types of code is relevant for
optimizations, but, other than that, the gpu profiling data is not very useful
to these general-purpose frameworks.

3. [32, cudaDeviceSynchronize()] will explicitly wait for the gpu to finish what it is doing,
but most commonly applications block when waiting for results (i.e. [32, cudaMemcpy()]).

4. I have come across generated kernels aggregated under a single name, as with
vexcl_vector_kernel; arbitrarily named ones (e.g. KER6817788380830779747, one of
the jit-compiled ArrayFire kernels), and ones that unambiguously describe their code,
such as Thrust kernels named after their expanded recursive C++ template, of which the
smallest I have seen is a constant initializer whose name is in excess of 800 bytes long.

http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g10e20b05a95f638a4071a655503df25d
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1gc263dbe6574220cc776b45438fc351e8
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Nvprof has a mode that periodically samples the cpu call stack, which turns
it into a statistical version of one of those wall-clock time cpu profilers, but
unfortunately this data is completely uncorrelated to the gpu profiling data.
Nevertheless, this mode is what is used in the following analysis for the C++
implementations, but this tool only profiles native function calls, which is not
easily translated into statements in interpreted languages, so this is more or less
useless for those implementations. Instead, those implementations use internal
profiling, where the MATLAB versions uses [28, profile] and the Python version
uses the cProfile[41, 27.4.3] module, but I have not checked whether these use
cpu or wall-clock time for their internal measurements.

Hotspots in Clustering Implementation
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Figure 5.1: Runtime breakdown of the clustering implementations. Those to the right
are the optimized versions.

Figure 5.1 visualizes a very coarse-grained runtime breakdown of the clustering
implementations, and it clearly shows that the mogem (the function that
converges a set of cluster models) is the major computational hotspot in all
of the implementations. The next most influential part of the program is the
scoring procedure, but anything beyond that is more or less neglectable. The
other category includes calls at the top-level to some functionality that is
shared with the mogem procedure, which is the reason why this category

https://se.mathworks.com/help/matlab/ref/profile.html
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is disproportional in the mogem optimized ArrayFire implementation when
compared to the original one. In the gpu MATLAB versions this category also
includes a mean over the original samples, which is disproportional large in
comparison with similar operations, so, as it is the first operation on the input
array, it probably indicates that it includes the time of a lazy copy operation to
the gpu, but, that being said, the timing scope in the performance benchmarks
has a bit wider scope, so rest assured the equivalent operation in the other
implementations is included in those measurements.

The implementations to the right in Figure 5.1 are the ArrayFire versions that
have had some parts of them replaced with equivalent low-level implementa-
tions, and it is important to emphasize that they are also allocating temporary
arrays, so their base of potential speedup should be the raii version, not the
fully optimized cuda version. Both Figure 5.1 and the performance experi-
ments indicate clearly that an optimization of the mogem procedure would
have amajor impact on that implementation’s total performance, and Figure 4.6
indicates that it would have been even closer to the low-level implementations
if this profiling session had used more samples. Optimizing the second most
prominent hotspot has a much smaller impact, which is to be expected.

5.2.5 Memory Transfer
Figure 5.2 and Figure 5.3 show, respectively for the streaming pipeline and the
clustering experiment, the amount ofmemory transfer and runtime contribution
of memory transfers as recorded by nvprof. It should be noted that there are
many factors impacting the achievable memory transfer speed, so this will vary
a lot, and therefore, you should not look too much into minor differences in
runtime breakdown. Additionally, the gpu is capable of overlapping memory
and computation operations, and exactly how nvprof aggregates the different
data in those scenarios has not been explored, but, if its graphical interface
is any indication on how the raw data is sampled, then these measurements
might overlap computational work.

If we ignore the MATLAB results for a minute, an rest assured those will be
discussed shortly, these plots showthe exact reason why this project focuses
on two separate benchmarks. Figure 5.2a shows that the streaming pipeline
benchmark inherently requires lots of memory transfers, and the delay of these
memory transfers make up a considerable part of the total runtime. This part
of the total runtime forms a lower limit of the achievable runtime, and, as
shown in Figure 5.2b, this constitutes more than half the total runtime in
most implementations. Whatever optimizations you do to the computation
part of an application will always be limited by the delay needed for necessary
memory transfers, so if you have external memory intensive applications, like
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Figure 5.2: Streaming pipeline memory profiling. Lower is better. This is based on
nvprof data (i.e. cuda), so cpu and opencl are left out.

the streaming pipeline, then there are limits to the achievable gain of the effort
put into optimizing that application.

Figure 5.3a shows the opposite scenario, where the need for external memory is
neglectable, so, as shown in Figure 5.3b, its impact on the total runtime is also
neglectable. Applications like this one do not have the same inherent limit to the
potential impact of optimization, and, as such, the computational differences
of the underlying frameworks are much more relevant to the performance of
this application.

MATLAB
Now, let us come back to the discussion of MATLAB’s behavior. In both of these
benchmarks it clearly moves around a much greater amount of data internally
on the gpu than any other implementation. The impact of moving data around
internally depends on how the gpu handles these operations, and, during the
streaming pipeline experiment, the average internal transfer rate would be
about 8000GB/s, which is more than an order of magnitude higher than the
gpu’s theoretical memory rate, so the only explanation is that the gpu simply
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Figure 5.3: Clustering memory profiling. Lower is better.

claims to have moved the data. My best guess is that these memory operations
results in either pointer swapping or something like copy-on-write access to
the original memory internally, but this has not been explored further. In the
clustering experiment, the impact of the internal data transfer is much more
apparent, so in that case, the gpu is probably making actual copies.

The amount of externally transferred data, at least the data transferred to
the gpu, is also substantially more than that of the other applications. The
leading hypothesis is that the data arrays are proxies to their original data, so
whenever they are actually used the data is copied from the original, which
would be a terrible approach when data arrays span distinct memory spaces.
The initial gpu array is used twice per polarization in the implementation,
which combined with observations in Figure 5.2a that shows the MATLAB
implementation transferring more or less twice the amount of data to the gpu
than the others, seems to substantiate the hypothesis, but this has not been
explored any further.
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5.3 Implementation Correctness
This section concerns itself with how the implementations have been tested
to ensure they are implementing their intended design correctly, and, as such,
have comparable performance, so for a discussion on the correctness of the
experimental performance results, see Section 5.2.1 and Section 4.3.3 instead.
The focus of this thesis is on the benchmarks as programming and compu-
tational tasks rather than the potential real-world usefulness of the resulting
implementations, so making them correct for the correctness sake was never a
high priority.

The implementations have nevertheless been tested, and, at least to my knowl-
edge, they are doing more or less the same as their reference implementations.
Making them behave correctly is primarily a means of ensuring that each
implementation is doing an equivalently sized task, and, as such, there have
been little effort has been spent on making any of these implementations
into any more than what is needed as a proof-of-concept for their respective
benchmarks.

The streaming pipeline implementations have special parameters that are used
tomake themwrite their results to the filesystem,as opposed to some temporary
memory location, which is their default behavior during performance testing.
The correctness testing procedure involves visual inspection of results, such
as those found in Figure 4.3, and a comparison with those generated by the
reference implementation.

The clustering results (i.e. image classifiers) have been tested on real data,
and the concept works, but neither the implementations created in this project,
nor the reference implementation is doing a terribly good job with their given
testing data, but, as their results are more or less the same, this should have
minimal impact on their relative performance, and, as such, improving their
accuracy was never prioritized. As discussed in Section 4.3.3, floating point
inaccuracies tend to yield slightly different classifiers from the separate imple-
mentations, so a straightforward comparison of the results is out of the question,
and the simple splitting of one more cluster tends to shift the color schemes
in the visualization software that was used, which made visual comparison
a cumbersome process. Instead a less comprehensive testing procedure that
is based on specific splitting decisions is used. This procedure compares the
cluster scoring at the split decisions and deems the implementations equivalent
if they are making identical splitting decisions up to the point where one of
them continues splitting more clusters than the other.
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5.4 Programming Experience
This project reimplements real benchmark problems that were in no way pre-
pared for being implemented as gpu software, and the choice of problems was
intentionally outsourced to other parties. Outsourcing the choice of problems
avoids having my inherent bias choosing problems that are, or for that matter
are not, specifically well suited for gpu implementations. Implementing real
problems also makes it possible that someone might get something useful out
of the implementations themselves, which helps with my motivation.

Having specific problems means that the implementation obstacles that occur
are neither fabricated, nor can they simply be avoided by redefining the initial
problem. This section highlights some of these obstacles, and discusses how
they influence the choice in, and the usefulness of, the gpu frameworks.

5.4.1 Feature Diversity
These problems are not the most complex ones in the world, but they require
some mathematical features that are commonly delegated to library functions
available to the programmer. The reference implementations were written in
MATLAB, and this sections presents those of MATLAB’s library features that
needed custom implementation in some of the frameworks. The general idea
behind this section is to point out that not all features are available in all of
frameworks, so any choice of frameworkmust be weighted against the potential
need for implementing missing functionality that is required by your given
problem.

Convolution
The reference streaming pipeline implementation used MATLAB’s convolution⁵
functionality to implement the averaging procedure described in Section 4.2.1.
Library functionality for this was only available in MATLAB and ArrayFire,
so the other frameworks needed custom implementations for this particular
routine. Implementing this as a low-level kernel is a trivial task, and it opened
up for the possibility of optimizing it by replacing the filter array with a compile-
time constant, but, whenever possible, the same routine was also implemented
in the high-level frameworks that was missing it.

The VexCL framework provides a VEX_FUNCTION construct for creating cus-

5. Actually it was using [28, imfilter()], but that is simply transposing its filter before
convolving, and in this scenario, as the filter is constant, the distinction is irrelevant.

https://se.mathworks.com/help/images/ref/imfilter.html
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tomized functions, which expects a code block from the user and in it provides
access to the original data pointers and an element index into them, but this is
literally⁶ just a feature that allows the user to write low-level code, so it is more
or less the same implementation as the low-level one. The openacc version
optimizes this sort of block automatically from plain C/C++ code (i.e. no
external library support), so its implementation of this procedure might as well
also be considered a low-level one. PyCUDA and Thrust supports customized
elements-wise mapping procedures in their high-level interface, but that does
not provide access to neighboring elements, so it is not enough, and they ended
up calling the low-level routine.

The generality of Thrust’s iterators makes this sort of problem solvable in its
high-level interface, and development using those was explored superficially.
The idea was to define these operations as the adding of the data vector
with itself offset by the distance to each of the relative neighbors within the
averaging window, but this approach escalated very quickly. It would have been
possible to formulate this sort of operation as a set of recursive templates, but,
frankly, this would be order of magnitudes more work than to implement it as
plain cuda code, so this approach was eventually scrapped in favor of calling
the low-level routine instead.

Matrix Operations
The clustering algorithm works with matrices, and, in addition to element-wise
operations, it requires matrix products and solving of linear equation systems.
This sort of functionality is provided by the cuBLAS library, and the plan was to
use this, or framework specific equivalent functionality, in the implementations.
Out of the explored frameworks, the only ones that have native support for
these operations are MATLAB and ArrayFire, and in these frameworks these
native interface are used.

The low-level cuda implementation intended to use cuBLAS for these opera-
tions, because the idea behind cuBLAS is that developers at NVIDIA optimizes
these routines to the best of their knowledge, so that regular developers should
not have to do that by themselves. The intention was that the other implemen-
tations also should either use cuBLAS directly or some native wrappers to it.
However, it turns out that PyCUDA is not compatible with cuBLAS for technical
reasons[25, FAQ:3.3], so the development of customized low-level routines for
these operations was started as part of the development process for a PyCUDA
clustering implementation.

6. This construct stringifies its given code block compile-time (i.e. not even parsing it), and
runtime jit-compiles this code either as cuda oropencl code depending on its backend.

https://wiki.tiker.net/PyCuda/FrequentlyAskedQuestions#Are_the_CUBLAS_APIs_available_via_PyCUDA.3F
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These routines were initially developed in the low-level cuda implementation,
because having them decoupled form the ongoing PyCUDA implementation
made it easier to test their correctness during the development phase. A rudi-
mentary low-level 2-pass routine for the kind of matrix products needed by
this benchmark was developed, and used seamlessly by the partially devel-
oped PyCUDA implementation. Development of the linear equation solving
functionality, on the other hand, turned out to be a more difficult tasks. Prob-
lems with large enough floating point rounding errors to throw the entire
clustering algorithm off track was encountered fairly early in its development
phase, which indicated that this part of the algorithm was so sensitive to such
errors that getting this implemented correctly would require more work than
it was worth. There was much effort into trying to fix those problems, because
abandoning them meant scrapping the entire PyCUDA implementation and
potentially others that turned out to be incompatible with cuBLAS, but eventu-
ally it was dropped, which also resulted in the PyCUDA implementation being
scrapped.

Already having implemented the working matrix product functionality meant
that this development track would at least yield something useful. The plan
was to use this more or less naive implementation to point out that trying to
achieve the same performance as the cuBLAS routine would require lots of
optimization. However, as shown by, for instance, Figure 4.6, it turned out that
this customized matrix product outperforms the cuBLAS version. The most
prominent theory for explaining those results is that the customized routine is
optimized for working on very skewed⁷ matrices, whilst the cuBLAS routines
tries to optimize for all intended usage cases. Other theories include only the
custom implementation utilizing warp shuffling[34, B.14], which is a fairly new
feature and a more efficient reduction technique than traditional ones using
lots of shared memory, but thinking that the cuBLAS implementation does not
also use that functionality would be presumptuous.

Inverse Cumulative Density Functions
The reference implementation of the scoring procedure in the clustering al-
gorithm required some statistical functions⁸ that are missing from all the
frameworks, and that I have neither found any other gpgpu libraries that
implements nor feel competent to implement myself. The workaround in these
implementations is to delegate that specific part of the calculation to the cpu,
but it requires some parameters that is computed on the gpu, so this approach

7. The actual use case is a feature-wise covariance, where the edge dimensions are below 10
and the common dimension is in the order of thousands and upwards.

8. Specifically MATLAB functions [28, chi2inv()] and [28, norminv()].

https://se.mathworks.com/help/stats/chi2inv.html
https://se.mathworks.com/help/stats/norminv.html
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impose some additional memory transfers per cluster splitting.

In this particular case the arguments needed by the cpu are just the statical
models, which results in much less than a kilobyte of data, so this additional
overhead is not a big problem, and its total performance cost is worth far less
than the effort of reimplementing these procedure by hand. MATLAB uses it
own cpu implementation, Python implementations have one implemented in
the SciPy libraries, and the C/C++ version uses an implementation from the
PROB[5] library.

This idea of falling back to computing missing functionality on the cpu will
always be a considerable trade-off to reimplementing it yourself, but if it imposes
large data transfers it becomes very unfeasible. The fact, shown in Figure 4.6,
that some gpu implementations surpass the multicore cpu MATLAB version
by a long shot, indicates that need to delegate some work back to the cpu does
not have to mean the end of the world.

5.4.2 C++ Templates + CUDA
C++ templates is a very expressive language feature, and it is this feature that
some of the frameworks utilize to create metaprogramming-like constructs that
translates into specialized kernel code at compile time. This leads to constructs
that makes it possible to create very optimized gpu code without the need for
low-level gpu code, but it brings with it some caveats.

First of all, anything that is going to compile cuda kernel code requires a
toolchain that is compatible with cuda compilation. That means that template
libraries that generate kernel code at compile time (e.g. Thrust and mshadow)
is going to be cuda source code, not C++, and there are some build systems
(e.g. GNU Autotools) that are not directly compatible with cuda source code.
VexCL works around this problem by jit-compiling the kernel code, so it is a
native C++ framework, but instead it requires access to the cuda compiler
at runtime, but that is not such a big problem, because most installations of
the cuda runtime environment is usually accompanied with the development
platform.

The commonality between these frameworks are that they create very complex
recursive templates. Such templates takes annoyingly long time to compile⁹
small applications, such as the streaming pipeline implementation, so I can only
fear how they are to work with on large projects. The deeply nesting brings

9. Streaming pipelines implementations, ArrayFire cuda (C++): 0.420s, cuda: 3.984s,
Thrust (cuda template): 9.823s and VexCL (C++ template): 20.016s
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with it inherent development complications because their definitions becomes
unmanageable. Whenever a compiler error concerns on of these templates, its
expanded name includes the entire stack of recursion, which results in names
that commonly span kilobytes of data. Manually extracting information from
these kinds of names is a cumbersome process, but Integrated Development
Environments (ides) helps mitigate such problems. However, the assortment
of ides that are compatible with cuda C is fairly limited, and, in any case,
there are other places, like debuggers and profiling utilities, where you also
have to deal with these names.





6
Concluding Remarks
This thesis has presented a semester’s worth of gpgpu framework exploration,
experimentation and analysis. The fundamental idea was to try to uncover
existing facilities for lowering the initial threshold to overcome in order to
make any use of gpu hardware, which has the potential of making these
computational beasts more readily available to regular developers. Rather
than starting from scratch, by creating yet another underdeveloped framework
suited for any one, or a few, particular usage scenarios, this thesis explores a
tiny, but relevant, subset of the already existing frameworks.

Github¹ lists in excess of 5000 projects associated with cuda and 3000 associ-
ated with opencl, so there is an abundance of possibilities, although many of
these project are more or less identical forks of each other. Mapping this entire
ecosystem would be a tremendous task, and this project only has the resources
to explore a tiny subset of the ones that are available. Table 3.2 catalogs those
frameworks this project has found to be the most the relevant, but, of course,
this is far from an exhaustive list of neither what potentially exists out there,
nor all the frameworks discovered during the course of this project.

One thing is to survey the field, but this thesis aims a bit higher than that,
and Chapter 4 described a set of real sar processing problems that have been
reimplemented, and thoroughly benchmarked, in the most promising subset of

1. https://github.com/, a well known free hosting service for publicly available source
code repository.
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the surveyed framework. The idea behind these benchmarks is to get a feel for
how the different frameworks aid the development process, and to determine
what overhead their abstraction adds to the computational solutions.

There are two separate benchmarks, one small data intensive algorithm, and a
much more extensive and compute intensive algorithm. They are supposed to
represent two common types of problems, and are designed to stress different
parts of the frameworks. The smaller one is implemented by frameworks that
provide:

• Compile-timegpu code generation (openacc[37],Thrust[35],VexCL[11]).

• Extensive libraries of general-purposegpu code (ArrayFire[45],MATLAB[28]).

• High-level language support (ArrayFire Python, MATLAB, PyCUDA[24]).

Missing functionality in some frameworks, and lack of time, limit the larger
benchmark to only being implemented using ArrayFire, ArrayFire’s Python
bindings and MATLAB. Additionally, both benchmarks have also been imple-
mented in low-level cuda code, to have a sort of performance baseline to
compare against the frameworks.

Experiments show that MATLAB implementations are consistently performing
worse than the other implementations, and using interpreted languages in gen-
eral seems to add a bit of extra overhead. In the data-intensive benchmark, every
implementation performs considerably better than multi-core cpu implemen-
tations, but in the compute-intensive benchmark, only the low-level baseline
implementation performs significantly better than the cpu implementation.
However, optimizing the computational hot-spot in the ArrayFire implementa-
tion, by delegating that part of the algorithm to the low-level implementation,
yields performance similar to that of the baseline implementation.

As for the lowering the gpgpu learning threshold, developing low-level cuda
code is complicated, because the parallel nature of it makes it hard to wrap your
head around what the code is actually doing, which makes debugging a bit of
a hassle. However, by itself cuda provides a very useful C/C++ interface, and
it is much easier to use than any of its predecessors (e.g. Brook). Unfortunately,
cuda is not compatible with cpu libraries, so, if you need some features
from your favorite library, you might need to reimplement those features from
scratch in cuda.

Having libraries of gpu code that simply work, although not always that
efficiently, is a very useful starting point, because building upon blocks that
presumably work, alleviates the debugging process during any application’s
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development phase. If you are not comfortable with writing C/C++-code, then
Table 3.2 lists gpu bindings for many languages, but you should be aware that
they probably impose some overhead, and many of them require you to write
the gpu code in the low-level language anyways. The code generators have
tremendous potential in the form of, among others things, expressibility and
portability, but with great power comes great responsibility, and development
in these kinds of frameworks happens at an abstraction level that might make
the code harder to debug and work with.

6.1 Conclusion
Going forward, if I were to implement some new gpu application, I would
start by writing it in ArrayFire, because that would hide the parallelism, which
makes the initial development process considerably easier. Then, if this imple-
mentation is performing inadequately, I would optimize parts of it, or even
reimplement it bit by bit, in a low-level gpgpu interface, which, by already
having a working application, is much easier than doing it from scratch.

A similar approach is doable from within MATLAB, which was the preferred
language for the physicists mentioned in Chapter 1, but its low-level bindings
are more cumbersome to work with, and gives you less control over memory
management. That being said, ArrayFire, albeit C++, might be a considerable
alternative, because it has a programming paradigm very similar to that of
MATLAB, and both support more or less the same gpu functionality.

6.2 Future Work
This thesis only explored in detail a tiny subset of the available gpgpu frame-
works, so there are lots of other frameworks that might provide equivalent,
or even better, abstractions to work with. And, in any case, many of the ex-
plored frameworks are under active development, and similar frameworks keep
popping up, so there is no telling what features the future holds.

The project had a fairly limited timeframe from the beginning, so it focused
the scope onto cuda fairly early, because that seemed to be the ecosystem
that currently has the best spread of frameworks. However, the multi-platform
opencl has a much greater potential, so over time, developers will probably
shift from the cuda ecosystem over to opencl, and then, or even before that,
future work can explore its realm of frameworks for similar, and hopefully
better, abstractions.





A
Source Code
Source code for the implementations along with benchmark results and a
digital version of this document can be found at:
https://static.johslarsen.net/uit/master-thesis/
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